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A second look at the role of the fast Fourier transform
as an elliptic solver
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SUMMARY

A fast cosine transform (FCT) is coupled with a tridiagonal solver for the purpose of solving the
Poisson equation on irregular and non-uniform rectangular staggered grids. This kind of solution is
required for the pressure �eld during the simulation of the incompressible Navier–Stokes equations
when using the projection method. A new technique using the FCT–tridiagonal solver is derived for the
cases where the boundaries of the �ow regime do not coincide with the boundaries of the computational
domain and for non-uniform grids. The technique is based on an iterative procedure where a defect
equation is solved in every iteration, followed by a relaxation procedure. The method is investigated
analytically and numerically to show that the solution converges as a geometric series. The method is
further investigated for the e�ects of the relative size of the rigid body, the grid stretching, size and
aspect ratio. The new solver is incorporated with the direct numerical simulation (DNS) and large eddy
simulation (LES) techniques to simulate the �ows around a backward-facing step and a 3D rectangular
obstacle, yielding results that qualitatively compare well with known results. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

A major time-consuming task when simulating unsteady incompressible �ow is to achieve a
velocity �eld that is divergence-free every time step. The projection method is widely used
for this purpose. The time marching is split to two levels, where in the explicit form of the
projection method, the �rst level accounts for the convection and di�usion terms. The second
level projects the velocity �eld to a divergence-free space using the pressure term [1, 2]. The
pressure is found by solving a Poisson equation and this is where a signi�cant portion of the
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Figure 1. Schematic description of a two-dimensional rectangular staggered grid.

computational time is spent. Other formulations as the stream function–vorticity and velocity–
vorticity can also be used to simulate unsteady incompressible �ow [1, 3]. However, methods
based on those formulations also end up with the need to solve the Poisson equation every
time step due to the incompressibility condition. The �ow can be made pseudo-compressible
as in the arti�cial compressibility method [1, 4], but a divergence-free velocity �eld is still
required. This is usually achieved by an iterative procedure that can also be time consuming.
Here we will deal only with the approach that requires an explicit solution of the Poisson
equation and in particular as it is related to the projection method.
One of the earliest rapid elliptic solvers used to solve the Poisson equation was the fast

Fourier transform (FFT). By using FFT, one got a set of scalar equations that were easy
to solve. A combination of the FFT with a tridiagonal solver was found to be particularly
useful for a second-order �nite di�erence scheme based on a uniform rectangular staggered
grid (Figure 1). Since the gradient is zero in the boundary condition for the pressure in
the projection method [1], fast cosine transforms (FCTs) are used in two directions, while a
tridiagonal solver is used in three directions [5]. This results in O(NxNyNz log2(Nx) log2(Nz))
operations, assuming that the tridiagonal solver is used in the y direction and Nx and Nz are
powers of 2. A further reduction in the computational time can be achieved by combining
it with the cyclic reduction technique, leading to the Fourier and cyclic reduction (FACR)
method [6].
The combined FCT and tridiagonal solver approach proved to be e�ective for cases of

simple geometry where a non-uniform grid was needed only in one direction, e.g. boundary
layers and cylindrical co-ordinate systems. Furthermore, the technique stayed limited to cases
where the �ow regime boundaries coincided with the computational box boundaries. This
meant that fast iterative solvers as the bi-conjugate gradient (BCG) and multigrid techniques
became the preferred elliptic solvers for the general problem [6]. The present work comes to
expand the FCT–tridiagonal solver method to cases where the �ow regime boundaries do not
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coincide with the computational box boundaries and for grids that are non-uniform in more
than one direction. The latter can be viewed as an extension of the studies of Cain et al. [7],
Buell [8] and Avital et al. [2] who looked at spectral schemes implemented on rectangular
non-uniform collocated grids. Here we will focus our attention on the rectangular staggered
grid type that is used along with a second-order central �nite di�erence scheme.

2. MATHEMATICAL AND NUMERICAL FORMULATION

2.1. The projection method and the general FCT–tridiagonal solver approach

The explicit form of the projection method for simulating the incompressible Navier–Stokes
(N–S) equations using a rectangular grid can be written as follows [1]:
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where uni and u
n+1
i are the velocity components in the n and n+ 1 time stages, respectively.

The time accuracy of the scheme is �rst order but it can be extended easily to a higher
order accuracy using, for example, the Runge–Kutta method, see Reference [2] for further
details. If the velocity component normal to the boundary is known a priori, then the normal
component of u∗ can be taken as equal to the normal component of un+1 [1]. This is because
of the explicit form of the time marching and the use of a staggered spatial grid. Therefore
by Equation (2) the gradient of the pressure is zero at the boundary of the computational
domain.
The spatial derivatives in (1) should be calculated using schemes of at least of second

order. The Poisson equation (3) can be rewritten as ∇(∇pn+1)= −∇u∗=�t and is discretized
as Equation (2) using a second-order central scheme. This yields the consistent behaviour of
the projection method, i.e. an exact divergence-free velocity �eld if the Poisson equation is
solved exactly. Assuming a uniform grid in the x and z directions and using FCTs in these
directions, one gets from (3)
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where the modi�ed wave number k̃x is related to the spectral wave number kx by

k̃2x =
4 sin2(kx�x=2)

�x2
(5)

k̃ z is similarly related to kz. The hat sign denotes a cosine transform in the x and z directions,
� stands for the source of the Poisson equation, i.e. the right-hand side (RHS) of Equation (3).
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s is a uniform co-ordinate that is mapped to the physical non-uniform y co-ordinate through
the grid mapping y(s). s′ stands for ds=dy and j stands for the index in that direction.
Equation (4) was discretized in relation to the point j−1=2. In the equation for j=1=2 p̂−1=2
is taken as equal to p̂1=2 and at j=Ny − 1=2 p̂Ny+1=2 is taken as equal to p̂Ny−1=2 because
the gradient of the pressure is zero at the boundary. As long as the compatibility condition
is ful�lled, i.e.

∫
�u · d �A=0 over the computational box, there is a pressure solution up to

a constant. Equation (4) can be solved using a tridiagonal solver and the pressure in the
physical domain can be found using inverse FCTs.

2.2. The case of rigid rectangular bodies

The underlining assumption in (4) is that the grid is single and there are no holes in the grid,
meaning the �ow �lls completely the computational box. However, there are cases where we
would like to have holes in the grid, which can be used to model the e�ect of rigid rectilinear
bodies with right angles. The wall velocity boundary conditions can be ful�lled by setting
the velocity values on the grid points that are inside the body and are closest to the body’s
boundary. Such an approach is attractive when the �ow regime of interest consists of a much
larger space than the rigid bodies and thus the loss in the computer memory allocation due
to the ‘dead’ points inside the rigid bodies is minimal. Examples for such cases are �ows
around a cube [9], a wall barrier [10] and a rectangular cavity [11].
Numerical experimentation showed that if the RHS of Equation (3) � were set to zero inside

the rigid body then the solution of Equation (4) would be close to the actual solution of the
Poisson equation far from the body but not in the vicinity of the body. Further improvement
was achieved when the values of � on the grid points inside the body and closest to its
boundary were set as equal to the values just outside, i.e. zero gradient of � at the boundary.
This improvement occurred since the gradient of pressure should be zero at the rigid bodys
boundary according to the projection method. However, the solution still was not satisfactory
near the rigid body. At this stage two options were considered. The �rst option was to
use this procedure as an approximate solution required for the preconditioned form of the
BCG method. This proved to be quite e�ective when no grid stretching was used in the y
direction. However, di�culties rose when grid stretching was used because of the need to
solve the transpose matrix equation [6]. Therefore a di�erent approach was developed, which
required only the solution of Equation (4) and not its transpose.
The idea is to use the linearity of Equation (4) and instead of solving it for the actual

Poisson source, to solve it for a defect source d=−(L(pg)− �), where pg is a guess and L
is the Laplace operator, meaning the left-hand side (LHS) of Equation (3). Since the solution
of Equation (4) with the actual Poisson source was found to be not that far from the actual
solution, then adding the solution of the defect equation to the initial guess should improve it.
This leads to an iterative procedure that is stopped when the norm of d is su�ciently small.
Two additional operations were found necessary to accelerate the convergence. Firstly, the

highest level of error was found near the rigid body, suggesting a signi�cant contribution
coming from the short waves. Relaxation methods as Gauss–Zeidel are excellent in reducing
short waves error. Therefore it is strongly recommended to run a few iterations of the point
Gauss–Zeidel method to the solution of the defect equation. This is done in the physical
space after the defect equation was solved using the FCTs and the tridiagonal solver in the
Fourier space and before adding the solution to the pressure of the previous iteration stage.
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Secondly, the initial guess for p should be an educated guess that is based on the solution
of the previous time step or sub-time step depending on the time marching technique. That
solution should be multiplied by the ratio between the two time steps or sub-time steps, see
References [2, 12] for examples when a third-order Runge–Kutta method is used for the time
marching. Numerical experimentation showed that by doing this the required computational
time could be reduced almost by half as the simulation progressed.
To summarize, start from an educated guess for p that is based on a previous solution.

Calculate the defect d and implement boundary conditions of zero gradient for d over the
rigid body using the body’s closest inner grid points. Take d as zero in all the other inner grid
points. Solve Equation (4) where d̂ is set as the source instead of �̂. Improve the solution by
applying a few point Gauss–Zeidel iterations to the defect equation in the physical space. In
the following examples, four iterations were found to be su�cient. Add the solution to the
initial guess and calculate the defect again. If the norm of the new defect is su�ciently small,
for example, as compared to the norm of the actual Poisson source �, stop here. Otherwise
calculate the next level of solution to the defect equation and continue until convergence.
The proposed method is close in its methodology to the multigrid method by relying on the

solution of the defect equation and a relaxation procedure. However, there is only one grid
and thus no restriction and prolongation operators are needed. Furthermore, the rigid body
boundaries stay well de�ned and do not change location as often happens when the coarse
grids of the geometric multigrid approach are used on grids with holes.
The new iterative method was investigated analytically for the 1D case in Appendix A. It

is shown that the pressure solution converges as a geometric series to the analytical solution,
where the ratio between the series’ terms is the length ratio between the rigid body segment
and the total computational domain segment. However, in that analysis the interaction between
the modes was not considered. That interaction occurs due to the discontinuity at the boundary
of the rigid body. This is the cause of Gibb’s phenomenon and its nature is to leak energy
to higher modes. Therefore relaxation methods as the point Gauss–Zeidel are quite e�ective
in suppressing this e�ect as is found in the test cases analyzed in Section 3.

2.3. Non-uniform grid and FCT

The transformation of the matrix presentation of the discretized Poisson equation in the phys-
ical space to a set of scalar equations in the Fourier space is because of the uniform grid
in the directions where the FCTs are used. If the grid is not uniform in that direction then
interactions between the FCT modes occur which result in another matrix equation. However,
if the grid is only moderately non-uniform then the interaction is weak and using only the
dominant diagonal terms in the equation will lead to a solution that is not far from the actual
solution. This was the idea behind the work of Avital et al. [2] who derived a collocated
grid mapping for a spectral scheme and used the BCG method to solve the Poisson equation.
Here the iterative procedure based on the defect equation will be considered for the staggered
grid instead.
If a grid mapping x(r) is used where r is an equally spaced direction and x is the physical

non-equally spaced direction then

@
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The aim is to approximate the RHS of (6) by a similar expression that does not lead to an
interaction between the FCTs modes. This will happen if the coe�cients of the p’s in (6)
are constants. Consider for this purpose the mapping of Avital et al. [2]

dr
dx
= �+ � sin2(�r); 06 r6 1 (7)

This mapping was used to concrete grid points in the centre of the computational domain in
order to simulate e�ectively jet �ow. It can also be used to concentrate points at the edges of
the computational domain as required for example in channel �ow, although in that particular
case the grid is usually uniform in the other two directions and thus FCTs can be used in
those directions.
If all the dr=dx’s in (6) are evaluated at point i− 1=2 when using the mapping in (7), one

will get

@
@x

(
@p
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)∣∣∣∣
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[�2 + ��+ 3�2=8 + f(ri−1=2)](pi+1=2 − 2pi−1=2 + pi−3=2)

�r2
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where the �rst-order accuracy is due to the evaluation of the r’s at point i− 1=2. f(ri−1=2) is
a function of the location ri−1=2 and the mapping coe�cients � and �. If �=0, i.e. the grid
is uniform, then f(ri−1=2)=0. If f(ri−1=2) is neglected in expression (8) then the discretized
form of the Poisson equation as expressed in Equation (4) can be recovered but with the
modi�ed wave number

k̃2r =(�
2 + ��+ 3�2=8)

4 sin2(kr�r=2)
�r2

(9)

instead of k̃2x . Solving Equation (4) with the modi�ed wave number k̃
2
r will yield only an

approximate solution if � �=0. However, if that solution is not far from the actual solution as
in the case of a moderate grid stretching, then the iterative procedure of the defect equation
solution described for the rigid body case can be applied here as well. It should be noted that
L(p) in the calculation of the defect d is the actual discretized Poisson operator as expressed
in Equation (6) for the x direction and not the approximation in Equation (8).
The e�ect of the stretching factor �=� on the defect was examined for the 1D case by

calculating it after one iteration. The di�erentiation was carried out analytically and the in-
tegration required for the L2 norm calculation was carried out numerically. The results are
shown in Figure 2 for various modes of � in the r domain, i.e. �= cos(n�r) where n is the
number of the mode. The defect’s norm is normalized by ‖�‖2. There is a clear monotonic
increase in the normalized norm as �=� increases. This is as expected, however the e�ect of
the ratio �=� decreases with the number of the mode. It means that the long waves are going
to be more problematic and these are also the wave lengths where the relaxation procedure
is least e�ective. Therefore in order to achieve a good convergence it can be concluded from
Figure 2 that �=� should be kept in the order of 1 and preferably less than 2. This limit is
similar to the limit derived by Avital et al. [2] for a fast convergence for the BCG method
when the spectral scheme was used.
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Figure 2. The variation of the L2 norm of the defect d with the stretching factor �=� of the grid mapping
(7) for the 1D case in the continuous limit after one iteration. The defect norm is normalized by the

L2 norm of the Poisson source ‖�‖2, where �= cos(n�r) and n is the mode number.

3. TEST CASES

The new iterative method was tested on two basic con�gurations, a two-dimensional rigid
body in the form of a backward-facing step and a three-dimensional rigid body in the form
of a box.

3.1. The two-dimensional step con�guration

A rectangular rigid body is taken as occupying the lower left corner of the computational do-
main, see Figure 3. This is the con�guration of a backward- or forward-facing step, depending
on the �ow direction. To test the convergence rate of the proposed method an arti�cial source
was prescribed to Equation (3) by taking

[u∗; v∗]= [sin(kxx) cos(kyy); cos(kxx) sin(kyy)] (10)

inside the �ow domain and zero inside the rigid body. �t was taken as 1, kx= n�=Lx and
ky= n�=Ly, where n is the number of the mode. Flow �eld (10) ful�ls the compatibility
condition and thus the Poisson equation should have a unique solution up to a constant. The
FCT was applied in the x direction and the tridiagonal solver was applied in the y direction
in the following cases.
The e�ect of the mode number on the number of iterations it takes to reach a normalized

defect norm less than 10−5 is shown in Figure 4. The geometric con�guration is of Lx=2Ly,
a=Lx= h=Ly=0:5 and the grid size in (Nx; Ny)= (129; 65). Since a staggered grid is used, only
(Nx − 1; Ny − 1) grid points are actually used for the solution of the Poisson equation and
those numbers are integer powers of 2. It is evident from Figure 4 that as n increases the
number of iterations decreases and it points to the better performance of the method for the
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h

a Ly

Lx

Figure 3. Schematic description of the two-dimensional rigid body con�guration to be tested and
whose results are shown in Figures 4–8.
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Figure 4. The e�ect of the mode number on the number of iterations it takes to get a normalized
defect norm ‖d‖2=‖�‖2 lower than 10−5 for the rigid body con�guration shown in Figure 3. The rigid
body size is a=Lx= h=Ly=0:5 where Lx=2Ly and the grid’s number of points is (Nx; Ny)= (129; 65).
The mode number and the Poisson source are de�ned in Equation (10). The FCT is used in the x
direction and the tridiagonal solver is used in the y direction. If the grid mapping (7) is used, then

the grid stretching factor �=� is 1.

short waves as was already indicated in Figure 2. The uniform grid shows in general the best
performance in terms of convergence rate as one might have expected. However, the grid
with a non-uniform y direction also shows a similar convergence rate. This is encouraging
because the tridiagonal solver by its own is capable of dealing with grid stretching without
any deterioration of performance. The result in Figure 4 demonstrates that this capability was
not damaged by the introduction of the rigid body, at least in this particular case.
The relatively slow convergence in the grids with a non-uniform x direction as seen in

Figure 4, is also as expected. This is because the iterative method has also to deal with the
non-uniformity of the grid in the direction where the FCT is used. A bit surprising is the
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Figure 5. The e�ect of the rigid body’s size and aspect ratio on the convergence rate, when the aspect
ratio is: (a) �xed; and (b) varied. The grid is uniform and the Poisson source is of Mode 1. The rigid

body is de�ned in Figure 3 and the rest of the conditions are as in Figure 4.

result that the non-uniform grid in both x and y directions shows a slightly better convergence
rate than the grid with the non-uniform x direction only. It should be noted that the slower
convergence of the non-uniform grid should not deter its usage. For example such a grid can
be useful to capture the extremely thin boundary layer developing on the normal wall of the
forward-facing step. Nevertheless, grid stretching in the FCT direction should be used with
caution due to its undesirable e�ect on the convergence rate.
The e�ects of the relative size of the rigid body and its aspect ratio on the convergence rate

are demonstrated in Figure 5 for the uniform grid case and for Mode 1. This is the mode that
took the longest to converge by Figure 4. Initially the e�ects of the rigid body size and aspect
ratio are small. However, as the iterative procedure proceeds, the e�ect of the rigid body size
becomes evident in Figure 5(a). All sizes show a convergence rate of a geometric series as
predicted by the 1D analysis in Appendix A. Furthermore, the slopes of the lines are close to
the inverse of the step ratio. This particularly holds for the step ratios of 0.5 and 0.75. This
�nding is also in a very good agreement with the analysis given in Appendix A, showing
that the interaction between the modes that was neglected in that analysis did not spoil the
convergence. However, it should be noted that when the relaxation stage of the Gauss–Zeidel
was removed, the convergence rate deteriorated considerably after a few iterations, pointing
to the importance of that stage. The e�ect of the aspect ratio of the rigid body is shown
in Figure 5(b). It is seen that the 1D estimate of the convergence rate can be taken as an
estimate for the lower limit if the longest length of the body is considered. The convergence
rate shows higher sensitivity to the length in the y direction than to the x direction where
the FCT is used. However when this 2D e�ect becomes signi�cant it only improves and does
not spoil the convergence rates seen in Figure 5(a).
The e�ect of the grid mapping on the convergence rate is further demonstrated in Figure 6.

As expected from the results in Figure 4, the convergence rate deteriorates considerably when
the grid is stretched in the x direction, which is where the FCT is used. Nevertheless the
convergence rate still exhibits the behaviour of a geometric series, pointing to the dominance
of this convergence mechanism even when a grid mapping is added. The e�ect of the grid size
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Figure 6. The e�ect of the grid mapping (7) on the convergence rate for Mode 1. The rest
of the conditions are as in Figure 4.
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Figure 7. The e�ect of the grid size on the number of iterations it takes to get a normalized defect norm
less than 10−5 and for Mode 1. The number of points of the grid is (Nx; Ny)= (32; 16)2g−1 + (1; 1).

The rest of the conditions are as in Figure 4.

on the convergence is shown in Figure 7. As in Figure 4 it shows the number of iterations
needed to yield a normalized defect norm less than 10−5. It is seen that the e�ect of the
grid size is weak for the uniform grid and the grid with the stretched y direction. Thus
as in the uniform grid without a rigid body the number of operations is still proportional
to NxNy log2(Nx), but with a coe�cient in the order of 20 multiplying it for the particular
case of Figure 7. On the other hand, the grids with a non-uniform x direction show higher
dependence on the grid size, although that dependence decreases as the grid size increases.
Up till now all results were shown for the same aspect ratios of the computational domain

Lx=Ly=2 and the grid size (Nx−1)=(Ny−1)=2. The e�ects of variations in these aspect ratios
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Figure 8. The e�ect of the aspects ratios of the computational domain and the grid size on the conver-
gence rate for: (a) a uniform grid; (b) a stretched grid by (7) in the y direction; and (c) a stretched
grid by (7) in the x direction. The Poisson source is of Mode 1 and the legend in (c) is the same in

(a) and (b). The rest of the conditions are as in Figure 4.

are shown in Figure 8. The results for the uniform grids are in Figure 8(a) and they show only
a very weak dependence on the aspect ratios as long as they are kept less than 1–4. Further
numerical experimentation showed that increasing the aspect ratio of the computational domain
to 1–8 did not show any signi�cant change. However, the convergence rate deteriorates when
�y=�x=4 which is the case of Lx=Ly=2 and (Nx; Ny)= (129; 65). This does not happen
in the opposite case of (Nx; Ny)= (65; 129). Further numerical experimentations for various
aspect ratios of the computational domain con�rmed the sensitivity to the high aspect ratio
of �y=�x.
The sensitivity to the very coarse y direction can be reduced by using a grid mapping in

this direction as demonstrated in Figure 8(b). By using a grid stretching factor of �=�=1,
the convergence rate of Lx=Ly=2 and (Nx; Ny)= (129; 65) becomes almost the same as the
others. The case of a stretched x direction is shown in Figure 8(c). As found in earlier
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Figure 9. Instantaneous passive scalar iso-surfaces of levels 0.5 and 0.85 at time 160
for �ow past a backward-facing step.

results it shows that a grid stretching in the FCT direction reduces in general the convergence
rate. However, the most di�cult case is now Lx=2Ly and (Nx; Ny)= (65; 129). This case
actually converged to the tolerance of 10−5 only after 250 iterations. This behaviour may be
attributed to the high aspect ratios of some of the grid cells in the physical space that go up
to �x=�y=8. However, this level of aspect ratio or twice as much in the uniform grid did
not yield such a strong deterioration in the convergence rate, indicating that the additional
interaction between the modes due to the grid stretching in the FCT direction had a role in
slowing the convergence. The case of Lx=Ly=2 and (Nx; Ny)= (129; 65) also shows a relative
low convergence rate, but all other three cases of the more moderate aspect ratios show similar
and better convergence rates.
An example of �ow simulation results that can be produced using the proposed

FCT–tridiagonal solver is shown in Figure 9, where the step height h is normalized to 1.
The time marching was achieved using a third-order compact Runge–Kutta, the convection
terms were calculated using the Quick scheme and the di�usion terms were calculated using
a central second-order scheme. Grid mapping was used in the y direction to cluster points at
y=0 and 1.5, with a stretching ratio of 2. The in�ow condition was of a laminar boundary
layer with a thickness �=0:2h and a random disturbance with 10% amplitude. The Reynolds
number was set to Reh=5000 and the step was put at 06 x6 3h. The computational box size
was set to (30; 6; 3)h in the (x; y; z) directions, respectively, and a grid size of (513; 120; 65)
points. Free slip wall conditions were used at the top of the computational domain and at
its spanwise sides. No slip wall conditions were used on the step boundaries and the bottom
of the computational domain. Convective out�ow conditions were used at the outlet x=30h.
The FCT algorithm was used in the x and z directions while the tridiagonal algorithm was
used in the y direction. Additionally a passive scalar fps was simulated using its governing
equation

@fps
@t

+
@(fpsuj)
@xj

=
1

ReSc
@2fps
@xj@xj

(11)
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where the Schmidt number Sc was taken as 1. The boundary conditions for the passive scalar
were as of the streamwise velocity but without the in�ow disturbance.
The simulation started from a zero �ow initial condition and the in�ow streamwise

velocity was slowly increased until reaching its full value. The instantaneous iso-surfaces
of the passive scalar are shown for time 160, where 1 time unit is de�ned as the time, the
free stream takes to move a distance of 1h. The �ow clearly shows breakdown to small
scales by going through a 3D breakdown of the large-scale wake mode near the step. This
is a typical �ow pattern in the backward-facing step con�guration and the calculated mean
reattachment length of 5:8h is in a good agreement with others, e.g. 6:28h from the DNS
results of Le et al. [13] who used turbulent in�ow conditions. Time history of the transverse
velocity v at x=5h which is in the recirculation region, showed that the transition process
was associated with a wave packet formation. The frequency of the amplitude modulation
was of the wake mode Sth ∼=0:06 [13] and the higher frequency was about �ve times of that.
Further analysis and comparisons to results from large eddy simulation (LES), detached eddy
simulation (DES) and unsteady Reynolds averaged Navier–Stokes simulations (URANS) are
presented in Reference [14].

3.2. The three-dimensional rigid body

Until now we looked at the two-dimensional body geometry where if a three-dimensional
simulation is carried out, the third direction is dealt using the regular FCT algorithm. However
bodies of three-dimensional geometry are of great interest and thus it is vital to see of there
is a signi�cant increase in the workload when using the proposed elliptic solver. Following
the 2D body investigation the solver is initially assessed for an arti�cial Poisson source using

[u∗; v∗; w∗]

= [sin(kxx) cos(kyy) cos(kzz); cos(kxx) sin(kyy) cos(kzz); cos(kxx) cos(kyy) sin(kzz)]

(12)

instead of the 2D velocity �eld speci�ed in Equation (10). The FCT is applied in the x and
z directions, where the tridiagonal solver is applied in the y direction. The wave numbers kx,
ky and kz are de�ned in the same way as in Equation (10).
The convergence rate was investigated for the case of a cube inside a cubic computational

domain and is shown in Figure 10 for Mode 1, which as in the 2D case showed the lowest
convergence rate. Comparing Figure 10 to its 2D counterpart Figure 6, shows that actually
there is a decrease in the number of required iterations. This decrease is due to the speci�c
location of the body and computational domain aspect ratio rather than a 3D e�ect as was
veri�ed when the cubic rigid body was turned into a square cylinder. As in the 2D case the
grid mapping in the y direction which is the direction where the tridiagonal solver was used,
did not change the convergence rate. The grid mapping in the FCT directions x and z, reduced
the convergence rate by a factor of 2, which is similar to what happened in the 2D case.
The e�ect of the grid size is shown in Figure 11 for the 3D case. Again as in the 2D

case the uniform grid and mapped grid in the y direction show much lower sensitivity to
the grid size that the grids with a non-uniform FCT direction. However the slopes of the
lines in Figure 11 are about half of their 2D counterparts in Figure 7, resulting for example,
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Figure 10. The convergence rate for Mode 1 of the three-dimensional Poisson source de�ned by Equa-
tion (12). The rigid body is a cube centred in a cubic computational domain of twice the length in each
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Figure 11. The e�ect of the grid size on the number of iterations required to get a normalized defect
norm less than 10−5 for the 3D Mode 1. The number of grid points is (16; 16; 16)2g−1 + (1; 1; 1) and

the rest of the conditions are as in Figure 10.

in an increase of three iterations for the uniform grid when the grid size parameter g is
increased from 1 to 4. The e�ect of the computational domain aspect ratio is demonstrated
in Figure 12 for the uniform grid. It is seen that the best convergence is achieved for the
cubic computational domain and the worst is when one of the domain lengths is smaller
than the others. This is a behaviour already seen in the 2D case, see Figure 8(a) and the
increase in the number of required iterations due to the change of the computational domain
aspect ratio is similar. Thus one can conclude from Figures 10–12 that the behaviour of the
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Figure 12. The e�ect of the computational domain aspect ratio on the rate of convergence for a uniform
grid. The 3D rigid body is a box with a length half of that of the computational domain in each direction.

The rest of the conditions are as in Figure 10.

solver in the 3D case is generally similar to that in the 2D case and a similar convergence
rate is achieved. Of course the 3D case will require more time to compute since for each
iteration the solver will have to perform O(NxNyNz log2(Nx) log2(Nz)) operations as compared
to O(NxNy log2(Nx)) operations in the 2D case.
To illustrate the 3D capability of the new solver, the NS equations were simulated using

the LES approach for the case of a boundary layer encountering a rectangular 3D obstacle.
The in�ow boundary layer pro�le was set to (y=�)1=7 where the free stream velocity was
normalized to 1. The computational domain size was set to (10; 4; 4)� and the grid size
to (129; 65; 65) points in the x; y and z directions, respectively. The rigid body was set at
3�6 x6 5�, 06y6 � and 1:5�6 z6 2:5� and a grid mapping was used to cluster points
at y=0 and � similarly to the backward-facing step simulation. The sub-grid stress (SGS)
model was Smagorinsky with Cs = 0:17 and it was coupled with an algebraic damping wall
function [15]. The Reynolds number was set to Re�=5000 and the rest of the conditions and
the method were as of the backward-facing step simulation.
The instantaneous iso-surface of the passive scalar is shown in Figure 13 for time 20,

where 1 time unit is de�ned as �=U∞ and � was normalized to 1 in the �gure. A bow wave
is observed in front of the obstacle and which goes around it to form two counteracting
vortices from the two sides of the box. This is a typical behaviour of the �ow past a 3D blu�
body [16], however the current vortices are a bit further apart than in the PIV measurements
of a 3D car model in Reference [16]. The �ow already detaches from the top of the box
before its end as can be seen from Figure 13 and as was also veri�ed from longitudinal
and lateral cross-sections of the �ow �eld. This is unlike the detachment of the �ow in the
backward-facing step that occurred only after the end of the body and it is associated with
the longitudinal vortices developing on the sides of the box. In general the wake shows more
longitudinal structures than the wake of the backward-facing step and this is a characteristic
of a wake of a 3D blu� body [16].
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Figure 13. Instantaneous passive scalar iso-surface of level 0.75 and at time 20 for a boundary layer
�ow past a box located at 36 x6 5, 06y6 1 and 1:56 z6 2:5, where the incoming boundary

layer thickness was normalized to 1.

The method was further tested for open 3D cavity and 2D wall barrier geometry, all showed
a similar behaviour to the one found for the step and box con�gurations. A limited comparison
to the BCG method was also carried out. The performance of the latter depends considerably
on the solver of the preconditioned form. When the easy-to-program diagonal scaling solver
was used, the present method showed a much superior performance except for the extreme
aspect ratio in Figure 8(c), where the performance of both methods was similar. The new
elliptic solver also generally showed better performance when a simple ILU pre-conditioner
solver was used. When the pre-conditioner solver was replaced by one iteration of the proposed
FCT–tridiagonal solver, the performance of the two solvers was similar for the uniform grid,
with a slight advantage for the current method. However, in the case of a non-uniform grid
in any direction the convergence of the BCG method was unsatisfactory. It points to the need
to modify the current FCT–tridiagonal solver to the transpose matrix equation if it is to be
used for the BCG method, as it was discussed in Section 2.2. A comparison to the geometric
multigrid method was not pursued due to the problem of the coarser grids to capture the right
location of the rigid body.

4. SUMMARY

The numerical solution of the Poisson equation on a rectangular staggered grid was pursued
by using a combination of the fast cosine transform (FCT) method and a tridiagonal solver.
A solution of the Poisson equation is required, for example, when the incompressible N–S
equations are simulated using the projection method. The technique of combining FCT with
a tridiagonal solver was extended for cases where the boundaries of the �ow regime do not
coincide with the boundaries of the computational domain and for grids that are non-uniform
in more than one direction. The new technique is an iterative procedure that is based on
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solving the defect equation using the FCT–tridiagonal solver and which is followed by a
few iterations of the relaxation procedure of the point Gauss–Zeidel method. Analysis of
the one-dimensional case showed that the solution converged as a geometric series provided
that interactions between the modes did not interfere. The one-dimensional case was further
investigated to �nd that the grid stretching factor in the direction of the FCT should be limited
to the order of 1 for practical use.
Test cases for rigid bodies of a 2D step and a box con�gurations, con�rmed the geometric

series convergence. It was also found that the long waves took the longest to converge. The
new method was found to be e�ective particularly for the uniform grid and the grid with
a non-uniform direction where the tridiagonal solver was used. The convergence rate was
similar in both cases and it showed only a weak dependency on the grid size. The grids that
were non-uniform in the direction where the FCT was used showed a lower convergence rate
and a higher dependency on the grid size.
The method showed a very weak dependency on the grid cell aspect ratio as long as it was

less than 4. Aspect ratios higher than this level were found capable to cause deterioration in the
convergence rate in the 2D step con�guration when the direction of the tridiagonal solver was
coarser than the direction of the FCT. Grid mapping in the direction of the tridiagonal solver
was found to be capable of restoring the convergence rate, since it resulted in a variable grid
cell aspect ratio. It should be noted that deterioration in the performance due to a high aspect
ratio in the grid cell also happens in other methods as the BCG and multigrid. Furthermore,
practically the direction of the tridiagonal solver will be usually �ner than the other directions
as for example in the case of a boundary layer simulation. In that case no strong deterioration
in the convergence rate can be expected even for grid cell aspect ratio high as 8 as mentioned
in Section 3.1.
The new solver was further illustrated by incorporating it with the DNS and LES techniques

to simulate �ow separation and vortex shedding occurring in the cases of a backward-facing
step and a 3D rectangular obstacle. It was demonstrated that the elliptic solver was not
limited to a speci�c grid mapping in the tridiagonal solver direction and the results compared
qualitatively well with published results. A limited comparison to the BCG method showed
a superior performance by the proposed method.
This newly proposed method can be further investigated by further comparisons to other

elliptic solvers, nevertheless its e�ectiveness has already been demonstrated. It is capable of
dealing with wall conditions whether free or no slip and periodic boundary conditions just
require replacing the FCT algorithm with the FFT algorithm while keeping the rest intact. It
can also be used for free �ows, e.g. the free jet simulations of Alonso and Avital [17], whose
high resolution results are to be reported. Further use of the new technique is planned for
exploring the e�ects of turbulence �uctuations on sound propagation in the presence of rigid
bodies by coupling the incompressible N–S solver with an acoustic equations solver [18].

APPENDIX A: THE EFFECT OF THE RIGID BODY IN THE
ONE-DIMENSIONAL CASE

Consider the following 1D Poisson equation

d2p
dx2

=F; 06 x6L (A1)
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where

F =

{
cos(�mx); 06 x6 c

0; c¡x6L
(A2)

and �m ≡m�=c. The boundary conditions are dp=dx=0 at x=0; c. The segment c¡x¡L
represents the rigid body and thus it can also be assumed that dp=dx=0 at x=L. Since
a uniform grid is used, L=c must be a rational number. Therefore �m must be equal to a
certain wave number kn that is de�ned as n�=L. Applying the suggested iterative method of
Section 2.2 means that the cosine transform has to be applied to all the section 0¡x¡L.
Thus after one iteration one gets

p̂1n=− c
k2nL

(A3)

where the cosine transform was performed analytically in the continuous limit. The hat denotes
a cosine transform, the superscript 1 means after the �rst iteration and the subscript denotes
the mode number. If the relaxation stage is not performed then the residual in the mode n
will be d̂1n=1− c=L, leading to

p̂2n→n=− c
k2nL

(
1− c

L

)
(A4)

The subscript n→ n means that only the e�ect of the mode n in the residual was considered
in the pressure solution of the mode n. Continuing with this process and summing all the
pressure solutions of the defect equations, leads to

p̂n=− c
k2nL

[
1 +

(
1− c

L

)
+

(
1− c

L

)2
+ · · ·

]
(A5)

This is a geometric series and since c=L¡1, it converges to −1=k2n , which is the analytical
answer.
In this analysis the interactions between the mode n and other modes due to the discontinuity

at x= c were neglected. This discontinuity causes Gibb’s phenomenon and the interaction
happens in modes where the ratio c=L times the mode number does not yield an integer.
The analytical investigation of this e�ect is left for future work due to the complexity of
the interactions between the modes. Nevertheless, as remarked in Section 2 the relaxation
procedure of Gauss–Zeidel was found to be an e�ective tool in suppressing those interactions.
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